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indeterminancy, for the states of the octet of baryons
and the decuplet of baryon resonances belong uniquely
in a 56 representation of SU(6), and cannot be put in a
56* representation. It is rather remarkable, though,
that all SU(3) synnnetry adds to SU(2) is the 6xing of
the signs of G~/Gr and p~/po while leaving their ab-
solute values unaltered.

In a subsequent paper we shall discuss in detail the
implications which are involved in the present approach.
In particular the approximation scheme employed will

be examined and additional results will be presented.
I wish to thank Professor R. E. Marshak for his

encouragement and Professor S.Okubo for his assistance
in isolating the origin of the sign di%culty.
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We examine, in this paper, the problem of formulating a bootstrap calculation when one of the scattering
particles is unstable. Having deaned the unstable-particle scattering amplitude as an 5-matrix pole residue,
we go on to discuss its analytic structure and point out that it may be determined from the usual Landau
rules. We conclude that although the instability of the external particle complicates the structure it does not
do so too severely. Therefore, we are free to postulate that, in analogy with the stable case, the unstable-
particle amplitude exhibits Regge asymptotic behavior. This assumption leads us to construct a strip
approximation to the amplitude which is a crossing-symmetric superposition of Regge pole terms. We point
out that this approximation exhibits, in some respects, satisfactory analytic structure. In particular it
takes quite well into account certain anomalous threshold effects. It satisdes a quasi-Mandelstam repre-
sentation which we use to explore the analytic structure of the corresponding partial-wave amplitudes and
their continuation to arbitrary angular momentum. We use certain simple discontinuity formulas to obtain
dynamical equations for the partial-wave amplitudes and are consequently able to construct, formally, a
complete bootstrap scheme. Finally, we mention some difhculties and unsolved problems.

I. INTRODUCTION
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T the present time qualitative success has been
achieved in some simple calculations involving

strongly interacting particles. ' More elaborate cal-
culations have been proposed and attempted; for ex-
ample, the various forms of the strip approximation to
the x-m scattering amplitude. ~"Most of these calcula-
tions make use of elastic unitarity. It has always been
intended, however, to improve on this situation by
introducing some inelastic eBects explicitly. In some
calculations this has already been done. " '4

Inelastic e6ects due to the presence of two-body
channels can be discussed by means of a 6nite-matrix
formalism which is a simple generalization of that used

'G. F. Chem and S. Mandelstam, Nuovo Cimento 19, 752
(1961).

~ W. Frazer and J. Fulco, Phys. Rev. 119, 1420 (1960).' S. Frautschi and D. Walecka, Phys. Rev. 120, 1486 (1960).
4 L. A. P. Bali,zs, Phys. Rev. 128, 1935 (1962).' L. A. P. Bali,zs, Phys. Rev. 128, 1939 (1962).
6 D. Wong, Phys. Rev. 126, 1220 (1962).' E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963).' G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).
9 G. F. Chew, Phys. Rev. 129, 2363 (1963).' G. F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).~ B. H. Bransden, P. G. Burke, J. W. Moffat, R. G. Moore-

house, and D. Morgan, Nuovo Cimento 30, 207 (1963).
'g F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962)."J.R. Fulco, G. L. Shaw, D. Wong, Phys. Rev. 137, B1242

(1965).
~ B. Kayser, Phys. Rev. 138, $1244 (1965).

for elastic calculations. "Most inelastic e6ects, however,
are associated with the presence of many-particle
channels. The formalism necessary for discussing these
channels exactly must involve inhnite matrices of a
complicated kind. '~" It would be convenient, therefore,
to have an approximate method for dealing with many-
particle systems which is as analogous as possible to
that for two-particle systems. The purpose of this
paper is to outline such a method.

The idea, which is not new, on which the method is
based, is that the dynamics of many-body systems is
dominated by resonance-resonance or particle-resonance
con6gurations. For example, the four-pion system is,
for suitable ranges of the center of mass energy, domi-
nated by the m--or and p-p con6gurations of the pions.
Similarly the ~~X system is dominated by the x-S*and
p-E con6gurations of the particles. The experimental
support for this idea may be summed up by pointing to
the impressive qualitative success of even very simple
isobar models. "
"J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960)."R.Blankenbecler, Phys. Rev. 122, 938 (1961)."L.F. Cook and B.W. Lee, Phys. Rev. 127, 283 {1962)."L.F. Cook and B.W. Lee, Phys. Rev. 127, 297 (1962).
'9 J. Ball, W. Frazer, and M. Nauenberg, Phys. Rev. 128, 478

(1963).
~ R. C. Hwa, Phys. Rev. 130, 2580 (1963).
g' Seminar by S. Mandelstam {unpublished).
fl'R. M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 123,

333 (1961).
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(.alculations incorporating this basic idea have al-

ready been proposed and in some cases carried out. '~"
They are essentially of two types. The hrst may be
characterized as the shurP resonance aPProximation u.
In this sort of calculation the unstable particles are
treated as if they were stable, the imaginary parts of
the resonance masses being neglected. The resulting
discontinuity equations, which are deduced, with many
approximations, from multiparticle unitarity, can take
on a rather awkward form especially when dealing with
residual three-particle effects such as the overlap of
different resonance conigurations.

An example of the second type of scheme is that
proposed by Lovelace" for a nonrelativistic system
and extended by Omnes and Alessandrini" to one with
relativistic kinematics. Here essential use is made of
Green's functions rather than on-energy-shell scattering
amplitudes. As pointed out by Lovelace, the use of
Green's functions avoids the necessity of taking ex-

plicitly into account the prominent anomalous thresh-
olds which appear in the on-mass-shell amplitudes.
However, the use of this technique sets these schemes
outside the S-matrix framework used previously for
two-body calculations.

All, of the points raised in the preceding paragraphs
are treated, at least approximately, in the scheme pro-
posed below. Not only is it fully relativistic but it is
able, while making use of on-mass-shell amplitudes
only, to take into account anomalous threshold effects
and residual multiparticle effects. It is enabled to do
so because dynamical information about the system is
expressed in terms of Regge trajectory and residue
functions.

In fact, the scheme is essentially the strip approxi-
mation, in the form proposed by Chew' and developed
by Chew and Jones, "extended to a situation with un-
stable particles. Because of this, it should, if successful,
provide a natural means of including more inelastic
effects explicitly into strip approximation calculations.

In setting up the scheme use will be made of the
following properties of the S matrix.

(1) The existence of poles in the complex planes of
the invariant variables.

(2) The fact that the residues of these poles factorize
in a signihcant fashion.

(3) The unitarity of the S matrix in the form of
discontinuity formulas. '-'

Properties (1) and (2) are needed in order to define
scattering amplitudes with unstable external particles.

~ P. G. Federbush, M. Grisaru, and M. Tausner, Ann. Phys.
(N. V.) 18, 23 (1962).~ S. Mandelstam, I. E. Paton, R. F. Peierls, and A. Q. Sarker,
Ann. Phys. (N. Y.) IS, 198 (1962)."F.T. Meiere, Phys. Rev. 136, Bf196 (1964)."C. Lovelace, Phys. Rev. 135, B1225 {1964)."R.L.Omnes and V. Alessandrini, University of California Ra-
diation Laboratory Report No. UCRL-11905 {1964)(unpublished)."D. I. Olive, Phys. Rev. 135, 3745 (1964).This reference con-
tains an extensive list of references on S-matrix theory.
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The third property provides the basis for the dynamical
equations which govern the system.

These points are clari6ed and illustrated in the follow-

ing sections in terms of a model comprising three identi-
cal scalar particles (m. mesons), any pair of which are
subject to a resonant S-wave interaction (p meson).
The unrealistic scalar nature of the particles is chosen to
avoid having to discuss, for the time being, the addi-
tional dynam;k. al complications associated with nonzero

spin particles, which were pointed out by Mandel-
stam. ""A discussion of the physical three-pion system
cannot, of course, avoid this issue, the spin of the p
meson being in no sense an inessential complication.

II. THE MODEL

and X is the number of m mesons to which the state can
couple. Clearly the m meson has G= —1 and the p
meson has G=+1,

%e assume, further, that the x-m. amplitude has been
successfully calculated in the strip approximation pro-
posed by Chew. ' That is, we assume that the amplitude
for the process represented in Fig. 1, A (s,f,u), can
be well approximated by a few Regge-pole terms:

2..(s i u) =PPRP (s t)+R;"'(su)j
+PPR "(f,$)+R,"'(f,u)]

where

+P [R,"(u,s)+R,"(u, i)j,

~ S. Mandelstam, Nuovo Cimento 30, 1113 (1963).
O' S. Mandelstam, Nuovo Cimento 30, 1127 (1963).

As indicated in the introduction we shall consider,
in this paper, a model theory which has as its lightest
particle a scalar meson, the x meson, with mass w, .
Ke shall make the following assumptions:

(1) The z.-7r elastic-scattering amplitude exhibits an
S-wave resonance, the p meson. The (complex) mass of
the p meson is m„.

(2) There exists a conserved multiplicative quantum
number, G, called G parity where
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" dt'
R ~(s,t) =- R;(t',s),

], t' —t

FIG. 2. Process 3m —+3m.

(3)

The system with lowest rest mass which couples to the
x-meson, therefore, is one containing three m mesons.
Relying on the belief that low mass states are more
important than those of high mass, we shall suppose
that the x meson is essentially a bound state of three x
mesons and ignore the effects of higher thresholds. Our
aim, therefore, is to calculate the bound-state poles
which occur in the 3m —+ 3~ scattering amplitude
describing the process illustrated in Fig. 2. As is well
known, "this amplitude has the following structure:

f82= gS—mr2.
(p& ps ps I Tl p~, ps, pa&= 2 (p'",p",

I ~I p*,p &

(5) +!a, L

where x is the cosine of the center-of-mass scattering
angle. It is continued to complex l in the usual way by
means of the Froissart-Gribov prescription. %'e have

8 (l,s) = V (l,s)/D (l,s),
ds'

D, (l,s) =1—— p„(l,s') V(l, s'), .
S —5

1 " 8 (l,s') —8 "(l,s).V, (l,s) =B,.~ (t'„s)+ ds'—
4mr'

The Regge-trajectory functions, a, (s), and the
reduced pole residues, y;(s), are determined self-
consistently by imposing elastic unitarity on the s
reaction, say, in the strip region 4m '&s6sj. This step
is performed by using the partial-wave tV/D equations.
The partial wave is dered, for integer 1, by

1
(q, ')'8 (l,s) =—X— dh E~(x)A, (s,x), (6)

2 Sx

Xb(Pk —P'')2p. o(2 )r'+A'(p~', ps', ps', p~, ps, ps), (11)

where
A'=A'(s;s;; t,;;s,'),

'=(p+p )' *'=(p'+p ')'

t;; = (p;—p, ')'

s= (pi+ p.+ps)'= (pi'+ pm+ ps )'

(ij,k) permutation of (1,2,3) .

(12)

(13)

Of course not all of these variables are independent.
They are subject to constraints; for example,

where (ij,k) and (i',j',k') are both even permutations
of (1,2,3).

The term A' is referred to as the connected part of the
amplitude. It contains no 8-function singularities. The
remaining terms are called the disconnected parts of the
amplitude.

It is convenient to regard A' as a function of various
invariant subenergies and momentum transfers. %'e
can write

ImB (l,s')ds'
8 P(l,s) =8 (l,s)

S —St
(10)

III. THE UNSTABLE-PARTICLE SCATTERING
AMPLITUDE

Because of the assumed conservation of G parity,
channels containing an even number of x mesons do not
communicate with those containing an odd number.

The strip approximation consists in constructing
8 (l,s) from the partial-wave projection of the Regge-
pole approximation to A (s,t,g). By supposition one
member of this self-consistent set of trajectories is
associated with the p meson.

So much for the, formally, well understood part of
the model. In the next section we go on to discuss how,
in principle, the trajectory associated with the m meson
may be calculated by means of the x-p scattering
amplitude.

sy+sg+sa= sy'+s2'+s, '= 3'„+g.

They are also subject to nonlinear constraints which we
shall not write out.

Ke shall make the standard assumption, maximal
analyticity, " that A' is an analytic function of its
variables except where singularities are required by the
unitarity equations to which the amplitude is subject.
The bound state which we seek is associated with a
pole of A' at the point s=m '. As has been emphasized
by various authors, ""these assumptions of unity
and analyticity imply that the p-resonance pole which
appears in the x-m scattering amplitude is also to be
found in the complex planes of the subenergy variables
(Sg $$ )

Making use of the factorization property of the
residues of these poles, we can exhibit their contribu-

"G. F. Chew, S-Matrix Theory of Strong Interactions (%'. A.
Benjamin and Company, Inc. , New York, 1961), Chap. 1."D. Zwanziger, Phys. Rev. 131, 888 {1963).

'3 D. I. Olive, Nuovo Cimento 28, 1318 (1963).
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tion to A„. thus

s f g

', )-& A s;—m, '
g 1

XA, (s,t,,) —+remainder.
s —mp' V3

(15) Fro. 4. Physical
regions for A, . 2) 0

If we write the real and imaginary parts of m, '
explicitly,

m~'= s„—ih )

t= 0

then unitarity implies that g, the pox coupling constant,
satishes approximately the equation

where q, is the center-of-mass momentum of the x
mesons at resonance.

The factor A, (s,t) is defined to be the s-p elastic
scattering amplitude with t, the momentum transfer
between the initial and 6nal pions and s, the square of
the center-of-mass energy. Reasons for choosing this
definition of the unstable particle amplitude are:

(1) If the p meson were stable this definition would
coincide with the usual one. The de6nition, therefore,
puts stable and unstable amplitudes on the same footing,
that is, they are both factors in pole residues. '

(2) The discontinuity formulas which govern the
unstable amplitude so dered are analogous to those
which apply to stable amplitudes. In particular, we
shall be able to use an 1V/D method for calculating the
partial waves of the x-p amplitude.

It is implicit in this last remark that we are going
to choose the x-p scattering amplitude as a basis for
calculating the Regge trajectory on which lies the m

meson. Of course, in principle, any amplitude which
contains the m-meson pole can be used in calculating it.
However, we are guided by our intuitive feeling, that
the m-p con6guration dominates the 3' states, into
selecting the m-p amplitude as a good starting point.
Ke would like to emphasize that the unstable amplitude
is a well-defined quantity and that we do not regard it,
in this calculation, as the basis for an approximation to
the complete connected 3x amplitude.

It might be thought that by concentrating on the
x-p amplitude we cease to treat the three m mesons
symmetrically. The identity of the x mesons, however,
is incorporated, into the formalism directly in two ways.
First, if the x mesons were not identical there would be

FIG. 3. )r-p scattering.

three distinct ~-p channels, not just one. Correspond-
ingly the subenergy pole residues would furnish
us not with just one vr-p amplitude but with nine
which would make up a 3X3 transition matrix. The
existence of only one m.-p channel, therefore, is already
a reQection of the identity of the m mesons. Secondly,
we shall consider processes in which the p meson breaks
up into two pions, namely

Hy treating the final-state x mesons in the correct
symmetrical fashion, we shall ensure that the identical
nature of these particles is acknowledged in the theory.

The most important point, however, is that any
s-plane pole, which appears in the x-p amplitude, must
also appear in A'. This follows simply because there
are regions in the space of the subenergy variables (for
example, s~ m, ', sq' m, '-) for which one of the pole
terms in Eq. (15) dominates for all values of s. Therefore
vr-p bound state poles are also bound state poles of the
3m system. This, of course, is just what one expects on
the intuitive physical grounds that communicating
channels, stable or otherwise, share the same bound
states.

To the extent, therefore, that our approximations
to A, are valid we can legitimately consider ourselves
to be calculating, albeit approximately, bound states
of the 3x system.

s= (p+q)'= (p'+q')',
t = (q—q')'= (p' p)', —
s= (p—q')'= (q' —p)',

(20)

s+t+s=2(m -"+mp'). (21)

Since m, is complex we cannot straightforwardly assign
a physical region to process (19). However, we shall,

IV. KINEMATICS

%'e have de6ned, then, an amplitude which describes
the process illustrated in Fig. 3.

m+p —+ x+p. (19)

This amplitude, A „depends on the variables ( t, s), s
where
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{c')

{b)

the Landau rules. '~39 The arguments supporting this
hypothesis are essentially topological and can be applied
equally well to stable- and unstable-particle scattering
amplitudes.

%'e can infer, therefore, that A, has, among others,
the following singularities:

a' 8= m~',(a) s=m ',
(b) t=m, ',
(c) s=9m, ', (c') s=9m.',
(d) t=4m. &,

(e) s=(m, +m )', (e') 8=(m,+m, )~,

(f) t = tg ———m '(m '—4m ')/m. ',
(g) t=ts= —(m~ 4m—)(m~' 16—m )/9m

'

The Landau diagrams associated with these singulari-
ties are shown in Fig. 5, the lettering in the figure cor-
responding to that in the text. Poles (a), (a'), and (b)
and normal thresholds (c), (c'), (d), (e), and (e') are
the types of singularity we expect to encounter in any
amplitude of a unitary S matrix. The singularities (f)
and (g) are anomalous thresholds. " Singularities of
this type do appear in all scattering amplitudes but in
the most familiar cases are hidden on an unphysical
sheet. In the case of A, the condition for t~ to appear
on the physical sheet is"

{s)

I'rG. 5. Landau diagrams for singularities of A, .

mp2&2m ""

and for t~ to appear is

m, '&10m "".

(26)

(27)

from time to time, find it convenient to ignore the
imaginary part of m, in order to obtain a diagram which
represents approximately the structure of A, . If we do
so here, we find that the physical region is bounded by
the straight line

For a p meson of mass equal to that of the physical
particle both conditions are satisfied.

If we make use of the trick of setting Imm, =0, we
can drs, w a diagram (Fig. 6) to illustrate these singulari-

and the hyperbola

st+A(s, m, ',m.') =0
where

(22)

(23) —, 0

rg ~4

~4

~e
7 (x,y, z,) =6+ys+z' —2(xy+yz+zx) . (24)

These curves are shown in Fig. 4. In region I of this
diagram, process (19) can occur with s as the square of
the center-of-mass energy and in region III with 8
fulfilling this role. Region II is the physical region for
the process

m+m —+ p+p (25)

which, by crossing symmetry, is also described by A,
suitably continued.

V. THE ANALYTIC STRUCTURE OF A,
It is, by now, well understood, though not proved,

that the principle of maximal analyticity implies that
the singular curves of S-matrix amplitudes are given by

FIG. 6. Singularities
4~a of A, .

t=0

'4 L. D. Landau, Nucl. Phys. 13, 181 {1959).» J. C. Polkinghorne and R. J. Eden, Lectures je Theoretical
Physics {%.A. Benjamin and Company, Inc. , New York, 1961)."J.C. Polkinghorne, Nuovo Cimento 23, 360 (1962)."J. C. Polkinghorne, Nuovo Cimento 25, 901 (1962)."H. P. Stapp, Phys. Rev. 125, 2139 (1962)."I.T. Drummond, Nuovo Cimento 29, 720 (1963).
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~~~&~Oblf &&
{mp+m~ j {Illp+SI~I

{a)

FIG. 7. Threshold structure of A

ties. We see immediately that (a), (a'), (c), (c'), (f),
and (g), in contrast to the case of a stable p meson, all

pass through one or the other of the physical regions I
and III. A straightforward explanation is to be found
in the fact that the instability of the p meson permits
the corresponding Landau diagrams to represent proc-
esses in which all of the particles (even the internal
ones) have physical 4-vectors. It is worth noting that
the anomalous threshold, (f), is concurrent with both
(a) and (a') at points on the boundaries of the physical
regions I and III. The same is true of (g) and (c) and
(c').

We can gain an idea of how these singularities can
be distributed in a physical case by inserting the experi-
mental values for m~ and m . Choosing es„'= 29m ' we
find that

(m, +m )'=40.8m '- (28)

tg = —725nt

The effect of giving m, an imaginary part can be
judged by using the experimental width of the p meson.
Taking 6=3.8m ', which corresponds to a full width at
half-height of 100 MeV, we find

(mp+m )'= (40 8 i4 5.)m- .
t"= ( 711+—i205)m ' (30)

The change of position of the m-p threshold is roughly
10% while that of the anomalous threshold t~ is 30%.
Ignoring the imaginary part of m„ therefore, should
yield a satisfactory picture of "nearby" singularities,
such as the normal threshold, but can cause a consider-
able displacement of "far away" singularities such as
the anomalous threshold. Ke shall find later that the
discontinuity across the cut attached to t& is con-
siderable only while I is in the "nearby" region, so that
the exact position of t~ will not be of great importance
in any case. Therefore, even though we have ignored
Imm, in constructing it, the diagram in Fig. 6 gives us
a good picture of the important singularities of A

In order to complete our picture of these singularities
we must understand the relationship between the
thresholds (c) and (e). If we draw the cut attached to (c)
along the real axis, then (e) does not appear on the sheet
so defined. "- " Ke can reveal the complex normal
threshold by displacing the three-particle cut down into
the complex s plane. This process is illustrated in Fig. 7.

Ke would like to draw particular attention to the
situation represented in Fig. 7(b), since we make this
configuration of normal threshold cuts the basis of our
separation of the complete three-particle effect into a
two-body effect and residual three-particle effects. The
discontinuity across the cut attached to the complex
normal threshold represents, of course, the effect of the
two-body, m.-p configuration while that across the three-
particle cut, drawn iN the fashMe indicated, represents
the remaining three-particle effects.

In addition to singularities which appear in only one
variable, such as those discussed above, A, has singular
curves which depend on two variables. Ke discuss some
of these singularities in the next section. However, we
regard the singularities of this section as the most
important ones. They constitute a minimum set con-
sistent with the unitarity formulas we use.

VI. TWO-VARIABLE SINGULARITIES OF A p

The unstable amplitude has singular curves which are
analogous to the boundaries of the Mandelstam double
spectral functions of stable amplitudes. Examples of
such curves are those associated with the Landau box
diagrams in Fig. 8. Just as in the case of the stable
amplitude, there is an infinity of types of diagrams defin-
ing singular curves of A, ."However, we shall empha-
size the diagrams of Fig. 8 because they, together with
the diagrams obtained by interchanging s and 8,
represent (roughly) the physical processes taken into
account in the strip approximation.

In these diagrams the lines of mass M~, M~, m~, m2,
m&', m2', p, &, and p2 represent arbitrary and, in general,
multiparticle exchanges. If we make m,' real, then
provided these exchanged masses are sufBciently large
so that the instability of the p meson becomes irrelevant,
the singularity structure associated with box diagrams
is in conformity with the Mandelstam representation.
It follows that a large contribution to the asymptotic
discontinuities in the variables (s,t, e) comes from terms

M,

{b)

FIG. 8. Landau box diagrams.
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FIG. 9.Box diagrams with low
Internal IDass.

and
p2) (m,'—2m. ')jm.

pg& (m,'—2m ')/m, .

(32)

(33)

In the former case the analytic structure is still con-
sistent with the Mandelstam representation provided
we include the anomalous threshoM cut,

(34)

in de6ning the physical sheet of the scattering ampli-
tude. For example, the complex surfaces attached to
the real curves 1'~ and Fs in Fig. 10(a) are not singular
in this sheet. Since it is large values of p.g vrhich are
associated with the asymptotic properties of A, we see
that, at least in the asymptotic region, large (s,a), the
contributions with an anomalous threshold still have
reasonably clean cut-plane analytic structure.

When p2 satis6es condition (33), the singular curve
is no longer consistent vrith the Mandelstam representa-
tion even when the anomalous threshold cut is included.
For example, that part of I'q to the right of the point Q,
where it touches the line t= tg, in Fig. 10(b) is singular
in the physical sheet. Another aspect of this same situa-
tion is that 1'q is singular in the limits (sixie, fWie),
but is not singular in the limit (s+ie, t+ie) That is, it.
is not electively singular when it passes through the
physical region. Although we are not able to accom-
modate the analytic structure of this diagram in our
approximation scheme, in a simple way we may draw
some comfort from this last remark since we can use it to
argue that such a contribution will not vary rapidly in
the region of interest, and, consequently, will not repre-
sent a strong dynamical eGect.

A simple discussion of the analytic properties of the
diagram of Fig, 9 becomes impossible vrhen we restore

which satisfy the Mandelstam representation. When we
restore the imaginary part ot m, we cannot describe the
analytic structure in such a simple way. However we
shall assume that the description remains substantially
correct on the grounds that Imm, is small compared
with the important internal masses in the diagrams.

In order to show what happens vrhen one of the
exchanged masses is small vre consider the diagram of
Fig. 9. The equation for the associated curve is"

(t—4m ')P, (s,m ',pg) =4pa'$(m '—2m, ')'+pm'm '
—(m '—2m ')(s—p, 22—m ')j. (31)

The curve is drawn in Fig. 10 (Irnm, =0) for two ranges
of values of p&, namely

the imaginary part to m, .Ke shall assume, nevertheless,
that the above discussion is still a useful guide when

Imm, is small. If it turns out that it is misleading in an
important way, then the follovring sections will have to
be appropriately modihed.

%'e can sum up our analysis of the singular curves of
2, by saying that, in the asymptotic region par-
ticularly, the sheet structure of the important contribu-
tions does not depart too seriously from a direct product
of cut planes provided we include the anomalous thresh-
old cuts.

s = (f2+m~)
2

&A

(b)

s = (p&+m }

-t=tA

Fro. 10.Singular curves associated box diagram of Fig. 9.
'o T. Regge, Nuovo Cimento 14, 951 (1959}.~ T. Regge, Nuovo Cimento 18, 947 (1960}.~ G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys. Rev.

126, 1202 (1962}.
~%. Rarita and V. L. Teplitz, Phys. Rev. Letters 12, 206

(1964}.
~ R. K. Logan, Phys. Rev. Letters 14, 414 (1965}.

VII. ASYMPTOTIC BEHAVIOR OP A p

Experience with stable-particle calculations has re-
vealed the importance of understanding the asymptotic
behavior of scattering amplitudes. An assumption which
has gained currency is that of Regge asymptotic be-
havior. ~'- It relates the high-energy dependence of an
amplitude in the direct channel to families of bound
states and resonances (Regge trajectories) in the crossed
channels, thus permitting a systematic discussion of the
subtractions necessary for dispersion relations. In
addition to being theoretically attractive, the hypothesis
has also provided the basis for a satisfactory 6t to the
experimentally observed diGraction scattering. ~ ~
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Even if, as is presumably the case, the Regge hypothe-
sis does not provide a complete description of asymptotic
behavior it does seem appropriate to strip approxima-
tion calculations. 4' Indeed, as indicated in Sec. II, Chew
has shown that it can be explicitly incorporated into
such a calculation. ' "

Since we believe that unstable amplitudes should be
discussed in essentially the same way as stable ones we
assume that the asymptotic dependence of A, is con-
trolled by terms which exhibit Regge behavior and,
therefore, behave like

(t) (s~&"+ )t (") at fixed t,
q., (s)(tQ( ~)aa.(») at fixed s,
q.,(a) (t.(»vs~(')) at fixed s.

Implicit in this assumption are two others:

(1) There exist Regge trajectories, e(s), which cor-
relate the bound states and resonances of the x-p and,
therefore, of the 3m system.

(2) Asymptotically A, is, to a good approximation,
analytic in the complex plane of the asymptotic variable
cut along the positive real axis.

Assumption (1) that multibody trajectories exist is
difFicult to avoid in a relativistic theory since cP bound
states are coupled to multiparticle states. It is par-
ticularly necessary, for example, to render meaningful
the identi6cation of Regge recurrences since they lie in
strongly inelastic regions. Unfortunately, proofs of the
existence of such trajectories are not yet complete. ""

Since we make the existence of Regge trajectories a
central part of the theory, we are heavily committed to
assumption (2). However we note that it does not
conflict too seriously with what we have learned of the
analytic structure of A, in Sec. VI.

Following Chew and Jones, '" we shall fulfill these
assumptions by supposing that A, can be well-
appr»ima«din the st~ps lsl &», I Il &» ltl «~hy a
crossing symmetric superposition of Regge poles. Thus,

A„(s,t,s) =8m p {R.„"(s,t)+g;B.„')(s,r)))

+8~+ {R.„'(s,t)+g;R.„'~(s,s)j

+8~ g {R„,' (t,s)+R„; (t,tt)). (35)

The Regge poles of the s, 8, and t reactions are contained
in the 6rst, second, and third brackets, respectively.
The 6rst part of the suKx on each term indicates the
channel to which the pole can couple, while i and j
indicate particular trajectories and $,=&1 according
as the signature of the trajectory is even or odd. In the t

4' S. Mandelstam, Ann. Phys. {N.Y.) 21, 302 {1963)."R.L. Omnes, Phys. Rev. 134, 31358 {1964).
4' R. I . Omnes and P. Alessandrini, Phys. Rev. 136, 81137

{1964).

reaction, of course, only even signature trajectories
occur. The quantitites s& and t& are the strip-width
parameters, t~ having the same value as in the ~-m

calculation, sy being real because of the assumed
simplicity of the cut plane structure of A, . Included
in the sums are those trajectories n „(s),n (s) for which

Ren(s) )—-', ,

Ren(t)) —— (36)

1
R "(s,s) =- d8

R.,(s, 's),
1 S —8

R., (s',s) ~ —',)r[2n(s)+1j(—q, ') ('y. ,(s)&.(,)(—s'),
tt ~(e

s mp mg +2PQqQs'= (38)

i "ds'
R„"(t,s) =— — R„(s',t),„s'—s

R„(s',t) =ylr[2a(t)+1](—p q ) '"y„(t)P ( )(—x'),

p~ +gt +&
g'= (39)

pQ= (s+m, ' m~') /—2(s)"', qQ= (s+m. ' m, ')/2—(s)",
q, ' =X (s,m, ',m. ')/4s,

p, '= (-', t—m, '), q(Q= (-,'t —m. '), (40)

where q, is the center-of-mass momentum for the m-p

system in the s reaction while q, and p( are the cor-
responding momenta for the ~-m and p-p systems,
respectively, in the t reaction. The quantities (r(s),
a(t), p, (s), p»(t) are, of course, the Regge-trajectory
and reduced-residue functions. Since trajectory is
common to many channels, we do not give it a suQix
and rely on the arguments s, t, 8 to inform us about the
reaction.

Note that in Eqs. (37) and (38) we have not specifie
the discontinuity function completely but have merely
indicated its asymptotic form. The reason is that, unless
other terms as well as the essential asymptotic part are
included, the s-plane analyticity properties of the re-
sulting Regge-pole terms are unsatisfactory. They
acquire unacceptable cuts running between the points

for some values of s and f.
The structure of the Regge-pole terms is given by the

following equations (we suppress the suffices &, and j);
" dt'

R.,"(s,t) = —R.,(t',s),
g,

t' —t

R-.(t', s) ~ Q~[2~(s)+1j(—q*')"7"(s)f'-(.) (—'),
]t~()o

s'= 1+(t'/2q ') (3&)
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'A

I'xo. 11.Anomalous threshold structure of A, .

s=0 and s= (m, —m, )'."The origin of the difficulty
is in the complicated relationship between z' and s
brought about by the inequality of m, and m .

In fact, how to construct a Regge-pole term which
does not contain the unsatisfactory cut for the case of
unequal masses is, at present, an unsolved problem.
Since the difhculty is not connected with the instability
of the p meson and since the precise form of the dis-
continuity function does not affect the discussion to
follow, we shall pass over this problem even though it
must be solved before a complete numerical calculation
can be performed.

VIII. ANALYTIC STRUCTURE OF THE
REGGE-POLE APPROXIMATION

In order to understand the a,nalytic structure of the
approximation to A, provided by Eq. (35), we must
know that of the trajectory and residue functions. The
following properties are consistent with our dynamical
equations.

Both the trajectories, n(s), and the residues, y.,(s),
are analytic in the s-plane cut along the real axis from
s=9m ' to infinity. Since it represents the angular
momentum of a bound state when s& 9m ', we expect
o(s) to be real analytic in the cut s plane unless two
trajectories coincide at some point, a, possibility we shall
ignore. Since the residue, y, (s), is that of an amplitude
obtained by an unsymmetric limiting process LEq. (15)j
we do not expect it to be real analytic. However, if
p, & & is the residue of the m-meson trajectory, then

that the residues, y»(t), while they are analytic in the
same region have in addition cuts running from the
anomalous thresholds t=t~ and t=t~ to the normal
threshold at 4m '. This analytic structure is shown in
Fig. 11.

Because of the analytic structure of n(s) and y, (s),
we can verify that the Regge pole approximation to
A, contains the singularities (c), (c'), (e), and (e') of
Sec. V. Because of the divergence of the dispersion
integrals in (37) and (38), and the corresponding inte-
grals with s and 8 interchanged, the approximation
also contains the poles (a) and (a') of Sec. U. Similarly
the analytic structure of the functions n(t) and y»(t)
ensures that the approximation contains the singulari-
ties (d), (f), and (g) while (b) is guaranteed by the
divergence of the dispersion integral in (39) together
with that obtained by interchanging s and 8. Notice that
the anomalous threshold discontinuities in this approxi-
mation are entirely the result of the corresponding dis-
continuities in y»(t). This fact will allow us to obtain
explicit expressions for them.

It follows, then, that the Regge-pole approximation
contains all of the singularities we identi6ed in Sec. V
as the minimum set consistent with our unitarity equa-
tions. In particular it contains the important poles of
A, and exhibits the corresponding Regge asymptotic
behavior in the crossed channel provided, of course, the
residue functions y„(s) and y»(t) vanish suSciently
fast at infinity. A sufhcient condition is4'

(42)

Just as in the case of the stable amplitude, the
Regge-pole approximation (35) is unsatisfactory in
that it has artificial logarithmic singularities at the
edge of each strip, s= sy, 8= sy, t = ty. That is, it does not
describe the transition from resonance to diffraction

o
e

where g, the psx coupling constant, is given by Eq. (17).
Since g' is approximately real we might guess that
y, & & and also, perhaps, the other residue functions
are approximately real when s &9m '.

In addition to the 3m normal threshold, we expect
n(s) and y, (s) to contain the complex ~-p normal
threshold and that the relationship between the two
thresholds should be just that illustrated in Fig. 7.

The Regge poles which couple to the p-p channel are
the same as those which couple to the m-x channel.
Consequently, the trajectories, a(t), are real analytic
in the t-plane cut from t =4' ' to in6nity. VVe shall 6nd,
however, from the dynamical equation for the t reaction

'8 This eras pointed out to the author by J. Stack.

= 4m»
= 0

=tA

FIG. 12. Support regions for the double spectral functions.

"C. E. Jones, Phys. Rev. 135, B214 (1964).
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scattering in a satisfactory way. Again, just as they do
for the stable amplitude, the partial-wave dynamical
equations will help to Diitigate this difELculty. ~

Another defect of the approximation (35) is that it
has suppressed the two-variable singularities we dis-
cussed in Sec.VI. There is no remedy for this except that
of adding explicit contributions to (35) which contain
whichever of these singularities we consider important.

Finally it is worth pointing out that the approxima-
tion to A, we have constructed satisfies a quasi-
Mandelstam representation, namely

Im s

ta)

A.,(s,t,S)=-
7r2

p„(s',t')ds'dt'

(s' —s) (t' —t)

1 p;&(s', t')ds'dt'+-
(s' —s) (t' —t)

1 p„-(s',s')ds'ds'

(s'—s) (s' —s) (b)

--- = Rs s

s—m' 8—m' (43)

The reason for the prefix "quasi" is that some of the t'

integrations run over the anomalous threshold cuts
which curl up into the complex plane. However if we
neglect Immp they lie Qat and we can represent the
areas in which the double spectral functions are nonzero
by the diagram in Fig. 12.

FIG. 13. Partial-wave singularities due to x exchange.

the anomalous thresholds, that is, near the spot marked
X in Fig. 11. For arbitrary s we obtain A(J,s) by
analytically continuing the function defined near
threshold. This means that z-plane singularities of
A, may force us to deform the integration contour.

That we do encounter such a situation can be demon-
strated from an examination of the partial-wave projec-
tion of the x-exchange contribution to A „

IX. PARTIAL WAVES FOR m-y SCATTERING A.,&'= —g'/(s —m.') . (47)
The x-p center-of-mass scattering angle, 8, is given

by the equation,

z= costt= 1+ (t(2q~s) . (44)

Regarding A, as a function of (s,z) we can define the
~-p partial wave amplitudes for integer angular momen-
tum J by means of the formula

Inserting this term into the right-hand side of Kq. (45)
we find that its partial wave is

g' 1 m, '—2tI&oqo~
A& &(J,s)= —— Q

Sz 2q, z 2q, ' )
This function has cuts which run between the points

1 1
A (J,s) =—X— dzPs(z)A, (s,z) .

2 8x
(45)

s=o and s= ~
and between the points

(49)

—1&z&1 (46)

when s—(m, +m )', A„being evaluated with t above

~ G. F. Chew, Phys. Rev. 130, 1264 (1963}.

We can use this equation, together with the approxi-
mate representation (43) for A „to obtain a picture
of the analytic structure of A (J,s) in the s plane. Be-
cause the instability of the p meson causes crossed
reaction singularities to pass through the physical
region, care must be taken in specifying the integration
contour in Eq. (45). We make the definition precise by
requiring that the z-integration contour be the ordinary
straight line

and
$=$1,=2mp +m~

s = sr&= (m p' m.')'/m. — (50)

m '= 29m~' —i3.8m~',

ss, ——(59 i7 6)m '— .
s~= (770—i213)m '-.

(51)

If we draw this cut so that it is the image of the straight

The latter cut, were the p meson stable, would be called
m-exchange short cut. In the case of an unstable p meson,
it lies to the right of the elastic threshold and if we use
the experimental values for m, it is not short. We find
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= Rez

Because of the existence of the quasi-Mandelstam
we can write the approximationrepresentation (43), we can wrr e

(35) in the form

in Fi . 13 and part of thoseold cuts together with those in ig.
Fro. 14. Partial- jn Fig. 16(b).

wave s-integration

MPLEX ANGULAR
contour. The point
P' is the position

MOMENTUMof the +-exchange
pole corresponding
to the point P in
Flg. 13.

1 " dt' 1
A (s t, s) =— D, (t',s)+'tr p

jr4~~'

dt'
D,"(t',s)

t' —t

(52)

dt'Qg (z')D((t', s)

d(r'Qs (z")Dr(s', s)
Sm

z' = 1+t'/2',
z"= (tl' —m '—m '+2Ppqp)/2q, r.

A
o ~e

2im~
2= asm~

c

he LaJolla Conference on Theoretical'~M. Froissart, Reporttot e a o a
Physi June 1961 (unpublished).

ETP 14 478 a d 1395(1961) /English transl. : Soviet Phys. —
(1962)g.

uation ath for m,~. The point A is a stable
d 8 is its physical value.value of m, ' an

~' S Mandelstam, Phys. Rev. Letters 4 84 (1960).
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As a result of using this prescription the integrations
over the contour C, for example, contain contributions
for which Q$(s') must be evaluated on a sheet obtained
by continuing clockwise through the cut

—00 &g'& —1.

lg
;/~ —==Re a

8&+& (J,s) =A &+& (J,$)/(q, 2)$. (55)

It follows that 3 &+&(J,$) does not vanish as J becomes
infinite and hence that a Sommerfeld-Watson transform
for A „does not exist. The virtue of this method, how-
ever, for continuing to complex J is that it preserves
the essential relationship between asymptotic behavior
and poles in the J plane.

Finally we define, in the standard manner, red, uced.
amplitudes 8&+&(J,$) by

Fre. 17. Relationship of the normal threshold cuts to some of
the x-p partial wave s-plane singularities due to crossed reaction
singularities.

analyticity properties of u(l, t). They are shown in
Fig. 18.

%e can also deduce that A, can be put in the form

)ma
ik A.,($,t,s) =— g 1 ds

+— — D, ($',t)
S—t+» 7l g~»2 S S

5t
g 1 d8

+— D, (&&',t), (58)
8—m 2 g g

28' —8

;(m —Nk j

tm s
&k

(m& —m») /9m»

=Res

where D, can be deduced from p, & and p„-. Again, we
use the Froissart-Gribov method for continuing to
complex l. %e have

g Pg +(), +sf
(p~qt) a (l&$) =~&

Ss- 2p q,

&e

+— d$'Q& (x')D, (s',&), (59)
8~ g .2

where

t p- I /
1 2 2 2

pp+qp+m, '
x'=

2p~&
(60)

FxG. 16. (a) Cuts due to 8 exchanges with 8~%g ~. We have
sJ.'=2m, '—'lm, ' and sp'= {os,~—m ~)'/9' '. (b) Cuts due to
t exchanges.

They have the same s-plane analytic structure as that
which we deduced for A (J,$), J an integer.

XI. PARTIAL WAVES FOR m+w~ tk+y

The center-of-mass scattering angle p for the process

Since only positive signature amplitudes exist for the t
reaction, we have not used the (&) superfix. In contrast
to the situation we described in the previous section,
the evaluation of the Q& functions presents no problem
when t&ke '. Again the important connection between
asymptotic behavior and poles in the l plane is preserved
by this continuation.

%'e define the reduced partial-wave amplitude by

is given by
x= co~= (p&2+qp+$)/2p, q, . (56)

Im )

Putting a(t,$&)=A, ($,1,a) the partial waves for this
process are defined, for integer angular momentum /, by

(57)

—==Rot

The representation (43) allows us to deduce the 3-plane
FIG. 18. Singularities in the t plane of partial waves

for the process 2I+2f. ~p+p.
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The s.nalytic structure of b(t, t) is, of course, just that
represented in Fig. 18.

XIL DYNAMICAL EQUATIONS FOR B&+&(J,s)
Xl(J,s) =BP(J,s)+

(mts+mg )

dS

The dynamical equations governing m-p scattering
are based on the formula connecting the discontinuity
of 8(J,s) Lwe drop the (&) superfixj across the s.-p
norma, ) threshold cut, to the amplitude itself. We have, where

B~(J,s') 8"—(J,s)
X p(J,s') &'(J,s'), (69)

$ —$

sI

8(J,s+) —8(J,s ) = 2ip(J,s)B(J,s+)B(J,s ), (62)

where the signihcance of + and —is indicated in Fig. 17
and

p(J s) —I 2s+1/sl/2 (63)

exp(2ib(J, s)) =1+2ip(J,s)8(J,s). (64)

Any ambiguities are resolved by requiring that

S( J(m, +m.)')=0 (65)

provided that there are no poles in the sheet dehned by
the con6guration of cuts in Fig. 17. Otherwise the
function is de6ned by analytic continuation.

In situations where the threshold condition (65)
holds we can, following Omnes, ~ define a D function by

1 " ds'
D(J,s) = exp —— b(J,s') (66)

{mp+m )'$ —$

the integral being evaluated with the contour F of
Fig. 17.

It is easy to verify from Eq. (62) that if

$(J,s) =8(J,s)D(J,s) (67)

then E(J,s) does not have any discontinuity along the
contour F between threshold and the edge of the strip
$=Sy.

By following procedures already established for
stable amplitudes, we can show that

81 dS
D(J,s) =1—— p(J,s')X(J,s') (68)

{mp+mg) ' $

~ R. 1.. Omnes, Nuovo Cimento 8, 316 {1958);21, 524 {1961).

This formula is completely analogous to the one
applicable to stable particle scattering amplitudes.
Although we have not done so, we believe that we could
derive it from the unitarity equations governing the
3~ —+ 3m amplitude. Certainly it is consistent with the
results of investigations of multiparticle unitarity. "
An heuristic proof can be found by supposing that the p
meson is stable, writing down Eq. (62) and then con-
tinuing both sides in m, along the path in Fig. 15.
Only if another singularity of 8(J,s) were to pass
through the threshold s= (m, +re )' would the proof
break down. However, what we have learned of the
other singularities of 8(J,s) suggests that this phe-
nomenon does not occur.

We can define a (complex) phase shift b(J,s) by the
equation

BP(J,s) =8(J,s) — (8(J,s')]. (70)
2x'z { ~ . )'$ $

and $8(J,s)), is the discontinuity of 8(J,s) across the
normal threshold cut, F. Of course, this contour, F,
also determines the integration paths in Eqs. (68),
(69), and (70).

Just as in the case of stable-particle scattering we
obtain a closed set of dynamical equations by supposing
that a good estimate of 8~(J,s) can be obtained by
subtracting out the normal threshold contribution to
the partial waves of the approximation (35).' "Again,
just as in the stable case, our equations guarantee that
the discontinuity of 8(J,s) is continuous across the
strip boundary s= $~.

The Regge trajectories are obtained as the zeros of
D, that is

D(n(s), s)=0 (71)

and the residue functions are obtained from the equation

7-.( ) = L~'(J,s)l(~l»)D(Js) j = * (72)

The dynamical calculation 8(J,s) can, then, be
carried out in a manner analogous to that for a stable
amplitude. DiRerences from the stable case are:

(i) A complex contour is used in formulating the
integral equation for X.

(ii) The distribution of cuts and singularities in 8
is rather complicated. Some of them lie near the x-p
normal threshold cut thus requiring that great care be
taken in evaluating integrals along F.

(iii) One of the cuts of B~, namely that attached to
the 3x threshold, is a "unitarity" cut rather than a
"force" cut. Experimentally, as was emphasized in the
introduction, the eRect of this threshold on cross sec-
tions is not discernible. We might hope, therefore, that
this particular discontinuity is not dynam@ ally impor-
tant either.

An exceptional situation arises, however, when a
resonance pole moves to the left of the m-p threshold. Its
presence automatically implies that the 3x discontinuity
in the neighborhood of the pole is considerable. Of
course, we are free to sweep the cut away from the pole,
except whee it passes through the 3x threshold. The way
in which the cut inQuences the motion of the pole in
the neighborhood of this singularity is discussed in the
next section.
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J=a(9' '). (73)

The branch point originates in B~(J,s) and propagates
itself through the E/D equations to E(J,s) and D(J,s).
Ke can see this explicitly by noting that, in the presence
of a pole on the sheet de6ned in Fig. 17, the de6nition
of B~(J,s), Eq. (70), must be modified by subtracting
out the pole in addition to the branch cut. %e have

ds
B~(J,s) =B(J,s)—2' ~sos~~~ & S —S

R(J)
X[B(J,s')],—,(74)

s—ss(J)

where E(J) and ss(J) are the residue and position of
the pole. The function ss(J) is the inverse of the func-
tion a, (s), that is,

~II. THF- ANALYTICITY OF N AND D
IN THE J PLANE

Jones's has pointed out that the exact E and D
functions must each have a cut in the J plane between
the points J=a(sr+) and J=a(sq ), the discontinuity
across the cut vanis»ng when the ratio S/D is formed.
Analogous remarks are, of course, applicable to the
unstable amplitude.

The X and D functions for the x-p amplitude exhibit
another cut of a similar nature. It occurs to compensate
for the absence from the D function of a branch point
at the 3s threshold. If D(J,s) were analytic in the J
plane, the trajectory functions predicted by equation
(71) would contain only a s-p normal threshold and
could never, therefore, be real analytic below s=9m '.
We can deduce, then, that D(J,s) has a J-plane branch
at

D function which lacks a given normal threshold,
s=sp, the E and D functions will have branch points
in the J plane at

J=a;(sr) (76)

for all trajectories a;(s).

XIV. THE 3~ DISCONTINUITY

The 3m. discontinuity of the approximate partial-
wave amplitude and the corresponding B~(J,s) is
provided entirely by the direct-channel Regge-pole
terms. If we suppose that only the poles in the right-
half J plane are important, then the discontinuity is

Vx pi(s)
hs.B~(J,s) =Ph3.

J-a;(s)

where the summation is over the prominent poles and
the symbol 63 represents the operation of taking the
discontinuity.

Ke have argued, in Sec. XII, that this discontinuity
is really important only when a trajectory is passing
through the 3x threshold. In a later paper we shall
examine in detail a(s) and y, (s) near this threshold.
Ke shall Gnd that both functions are essentially real
and analytic through the threshold and that the correc-
tion to a(s) is proportional to y„,(s) 2t.'(a(s),s). The
function E(J,s) is determined from a dynamical cal-
culation which utilizes two-body unitarity in the x-m

channel and which treats the three x mesons symmetri-
cally. The correction to p, (s) is, to the same approxima-
tion, still zero. Under these conditions we 6nd that

V-.(s) V-, (s)~3~(s)

J—a(s) [J—a(s+)][J—a(s )]
ss(a(s)) =s. (75) where

It follows that ss(J) and, hence, B~(J,s) has a branch
point at J=a(9' ').

Of course, when the partial wave amplitude is con-
structed from the ratio X/D the discontinuity across
this cut vanishes. Because the presence of the branch
point depends only on having to subtract the pole term
in Eq. (74) and because the partial wave projection of
the approximation (35) contains the poles correctly we
can see that even the approximate B~(J,s) contains
this branch point. Hence if we can give a good account
of the 3m discontinuity of the partial wave amplitude,
we can hope to treat this phenomenon in a satisfactory
way within the strip approximation. The approximate
E and D functions will not, in general, yield a ratio free
of this branch point. Nevertheless if our approximations
are satisfactory it should have a weak eGect.

It is worth pointing out that this phenomenon is quite
general and that whenever X/D equations result in a

»» C. E. Jones, thesis, University of California Radiation
Laboratory Report No. UCRL-11125, 1963 (unpublished).

a(s~) =a(s)WAS~(s).

Consistent with our approximations we have

V-.(s) V-.(s)~&~(s)

J—a (s) [J—a(s)]'

As indicated above

(79)

(80)

63~(s)=2iy, (s)R(a(s),s)

with the result

(81)

1 " ds' / y „.(s') y'
I
&(a'(s'), '), (83)

9 .I s' —s&J—a;(s)'j

'Y~e~ (s)
As,B~(J,s) = 2i P R(a;(s),s). (82)J—a;(s)

The contributions of the direct-channel Regge poles
to B~(J,s) are, then, a left-hand-cut term together with
the term
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~-x normal threshold cut is

b(l, t+)—b(l, t ) = »p-(l, t)b(l, t+)&-(1 t-) (84)

Ke assume the formula to be valid in the whole strip
region 4m '~t~t~. It follows that

b(l, t) =e(l,t)/D (l,t),
where e(l,t) has no normal threshold cut. We find that

where the integration is over the 3x cut as drawn in
Fig. 7(b). We emphasize this point since only when so
evaluated does R(a(s),s) represent solely residual three-
particle eGects. This function, in fact, contains a com-
plex m-p threshold and when evaluated along the real
axis acquires a term proportional to p(u(s), s) which
swamps any residual three-particle eGects. Ke can see
by inspection that the term (83) contains the required
branch points at I=a;(9m, ').

The expression (83) depends only on a(s) and p, (s)
together with certain x-x scattering parameters implicit
in E(J,s). It follows that if we take for granted the
analysis which leads to Eq. (81), the residual 3» effects
can be determined entirely in terms of turo-body
parameters and functions.

XV. DYNAMKAL EQUATIONS FOR b(l, t)

In order to be able to formulate a complete boot-
strap scheme we need equations which will allow us to
calculate the residues y»(t) These eq.uations are pro-
vided by the discontinuity formula for b(l, t).

The analytic structure of b(l, t) is obscured by the
overlap of the discontinuities produced by crossed
channel singularities and by the anomalous threshold
in the direct channel. For example, the cut attached to
the branch point t=t~ in Fig. 28 arises both from the
anomalous threshold and the m-exchange poles s=m ',
8=m '. In the exact amplitude these overlapping dis-
continuities are related in a way which allows us to
obtain a dynamical equation for b(l, t). Since we do not
claim to be able to derive our discontinuity formulas
rigorously, we feel free to exhibit this relationship by
resorting once again to a continuation in the mass m, '
along the standard contour, E, in Fig. 25.

Ke start, then, with a situation in which the p meso'
is stable. The corresponding singularity structure of
b(l, t) is shown in Fig. 19. The discontinuity across the

tA

I zo. 2D. The partial-wave t-plane singularities when m, '&2m '.

where
Xp-(l, t')&-(l, t'), (85)

2 '~ dt'
(86)

[b(l,t)]g being the normal threshold discontinuity of
b(l, t).

As m, ' is continued past the value 2m ', the left-hand
branch point t=t~ moves up round. the threshold
t=4pt '. Equation (85) can only be maintained if we
deform the integration contour to avoid the moving
singularity. This situation is illustrated in Fig. 20.

It is more convenient to give up the deformed con-
tour and modify Eq. (85) by the introduction of an
anomalous threshold term. We have

I (l,t) = b&(t,t)+-
b' (l,t') —bP(l, t)

dt'
t' —t

x[Y(l,t')g,p..(t,t')x,.(l,t'), (s7)

where p (l,t) is p (l,t) continued clockwisearoundthe
normal threshold and [b~(l, t)]& is a suitably evaluated
discontinuity of b~(l, t) Since the. singularity t=tz is
produced purely by the ~-exchange poles we find

[b.(l,t» = [b'-'(l, t)j.=b'-'(l. t.)-b'-'(l, t ), (88)

where bt ~(l,t) is the partial-wave projection of the
crossed-channel pole terms,

g' 1 ~&t m, '~—
g, ~ ~. (89)

4 2(p,qg)'+& I 2pgq, i
and the limits & are shown in Fig. 20.

When m, ' passes the value Hbn ' the singularity ts
also moves around the normal threshold creating a
second anomalous contribution to the right side of
Eq. (87). We shall not consider this threshold explicitly
and so are free to continue m,' to its physical value
without introducing any further modification to
Eq. (87) except the deformation of the anomalous
integration path so that it lies along the familiar
anomalous threshold cut.
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In our scheme, &&&~(l,t) is calculated from the partial-
wave projection of the approximation (35) by subtract-
ing out the normal and anomalous threshold contribu-
tions of the direct-channel pole terms. Since the
approximation contains the crossed-channel pole terms,
it still predicts the correct anomalous threshold struc-
ture for the partial-wave equation.

The residue functions are determined by the equation

'r" (t) = Ln(t t)/(~/@)D-(I t)jt &-& (90)

Because of the anomalous contributions to n(l, t) we
see that (87) predicts that y»(t) will have anomalous
thresholds at t=f~ and f=t~ as already stated in
Sec. VIII.

Ke can calculate the discontinuity across the cut
attached to t=t~. %e 6nd

~~v-(t)=»Lf & &(~-(t) t)l p -(~(t) t)v-(t) (9I)

Hence, this discontinuity is determined entirely in terms
of known functions and the residue functions for m-m

scattering. In general, evaluation of the discontinuity
of f&&~&(t,t), though possible, is unilluminating. In order
to gain some idea of the behavior of the anomalous
discontinuity, t& zp»(t), therefore, we assume that a(t)
is Rat and equal to zero. Ke have theo. ,

Lb&.& {0,t)j,
27ri(g—'/4 r)/&r (4m ' t) (4m—," t)5"."—, (92)

p„(0,t) = —i(4m '—t)'&o/2(t)"' (93)
so that

h~y»(t) = —4&riL(g'/4&r)/Lt (4m'' —t) $'&']y (t) . (94)

Since y (t) is, presumably, appreciable only in the
"nearby" strip region, ~t~ &tr, the same is true of
~~&,.(t).

In an Appendix we compute the corresponding
anomalous threshold discontinuity predicted by the
approximation (35) and verify that, asymptotically, it
is correct.

XVI. BOOTSTRAP CALCULATION

Clearly we now have all the elements necessary for a
bootstrap calculation. If we assume input functions
&o' (8), y, '

(N), y»& (t) we can calculate, via the
approximation (35), the driving term B~(Js) for or-p

scattering and hence obtain, from the dynamical equa-
tions of Sec. XII, output functions o&'"'(s), y, '"'(s).
Similarly by assuming input functions a' (s), y, ' (s)
we can calculate the driving term, b~(t, t), for the process
&r+s —& p+p and obtain output functions y» ~'(t)
A bootstrap solution consists in ending a set of functions
which when used as input reproduce themselves as
output.

Ke are faced with the practical problem of
parametrizing the input functions. If we continue
to use the Froissart-Gribov formulas, in Eqs. (53)

(95)
s—m' 8—m'

The super6x E on the irst and third terms on the
right side emphasizes that they contain no anomalous
thresholds. We have then, instead of Eq. (53),

0

(2q, ')A &+& (J,s) =— dt'[Qs(s')]Q pn(s, t')
8~

1
dt'Qs(s')D, "(t',s)

8~

So

Sm

dtt'[Q, (s")g&.,"(s,tt')

go &&2&t&oqo
—m, o

(96)
Ss 2q, '

&&o=2(m, '+m ')+X(s,tn, ',m ')/s+s, (97)

and [Qs(s)1, represents the s discontinuity of Qs(s)
divided by 2i.

Notice that the s' integration is now over a region,
which, for the most part, lies below the singularities
of a(tt) and y, (8) although, for s((m, '—m ')'/9m '-,

the end point, 80, does lie above the 3x threshold. How-
ever, since we regard the 3m discontinuity as a weak
e6ect, we can try to parameterize the input functions
by formulas which lack it. Thus we could have, for
example,

bg b3
n' (s)=a+ +

8—8~ 8—sa

v-, '"(s)= +
s—82 8—83

where we expect 8~ and 83 to lie towards the upper end
of the strip. If we use such formulas J3(J,s) will lose the
geometrically most prominent part of the analytic
structure of Fig. 16(a), which means that the driving
term 8 (J,s) will be correspondingly simpler to
evaluate.

To achieve a parametrization of y»' we irst split
the residue functions into two parts. Thus,

v„(t)=v,."{t)+v",(t), (99)

and (59), to effect the continuation to complex J, then,
we require parametrizations accurate in regions where
the input functions have singularities. By converting,
partially, to the%ong method' for continuing in angular
momentum, we shall avoid the necessity of constructing
such parametrizations.

First we rewrite Eq. (52), in an obvious notation, as

1 df'
A, (s,t,s) =A,n(s, t)+ — D&"(t',s)+A,N(s, a)
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where p»~(t) has discontinuities only above the m.-~
threshold and y»" (t) contains only the anomalous
threshold discontinuities. The important point is that
A,N(s, t) depends only on y»~(t) while D&"(t',s) is
determined by the discontinuity of y» (t). Since the t'
integration in Eq. (96) lies entirely in a region where
y»N (t) has no singularities, we can parametrize
V»" (t) as

v„"(t)= +
t—t2 t—t3

Again, replacing Eq. (59) by a Wong formula would
free us, by arguments of the same type as above, to
use the forms suggested in Eq. (98) for n, ' and

y, ' in calculating the driving term b {l,t). In this case,
also, we achieve a simplification of the analytic struc-
ture; by removing the 3x discontinuity we eliminate the
anomalous threshold t=tz, thus simplifying, in turn,
the calculation of the discontinuity of y»" (t)

As is usual, in a bootstrap calculation, we are not
guaranteed in advance that the output functions we
obtain will be suitable for use as input functions. In
our case this difBculty takes the acute form that our
output trajectories may not be real analytic. Similar
remarks apply to the residue functions.

Another consistency requirement which is not
guaranteed is that y, & ' (sa ') =g'. This is an example of
the familiar fact that a bootstrap theory overdetermines
the scattering parameters. Ke can only hope that, in
a physical situation, our approximation scheme does
not depart too seriously from reality and that these
consistency requirements are not too badly violated in
practice.

xmr. comer. Usrom

%e have discussed in this paper how a bootstrap
calculation might be performed when one of the external
particles in the scattering amplitude is unstable. The
important properties of the unstable amplitude of
which we were able to give a discussion were

(i) the complex normal threshold discontinuity,
(ii) residual three-particle effects,
(iii) the prominent anomalous thresholds which arise

from the instability of the external particle, and
(iv) asymptotic behavior.

Many problems remain, however, and because of this
our discussion must be regarded as provisional. Of these
problems perhaps the most important is that of remov-
ing the restriction to 5-wave resonances. Of course this
problem is not unique to unstable amplitudes. External
particles of high spin, " stable or unstable, cause dif-
hculties in the formulation of dynamical scattering
equations. Mandelstam has pointed out that the resolu-
tion of this difhculty lies in a better understanding of
multiparticle effects. ~

Further difhculties are, the construction of satis-
factory Regge-pole terms for particles of unequal masses
and the estimation of the importance of analytic struc-
ture entirely omitted in the approximation scheme.
There seems to be no way of performing this estimation
except in the context of a numerical calculation.

mpzmorx

In this Appendix we utilize the anomalous discon-
tinuity, obtained in Sec. XV for the function y„(t),
to evaluate the anomalous discontinuity predicted for
A, (s,t, s) by the approximation (35). This discon-
tinuity receives contributions only from the t-reaction
Regge-pole terms. In order to simplify the writing we
assume that only one Regge-pole term is important.
Ke 6nd

hgA, (s, t, 8) = 87rtsg[R»*'(t, s)+R»"(t,B)]. (A1)

From Eq. (39) of Sec. VII, we see that

where

j. ds
S,R„' (t,s) =- a&R„(s',t),

s —s
(A2)

AgR„(s', t)
= 2~C2o-«)+1](—pe~)C~~~-(t)]&-«&(—*') (A3)

using Eq. (91) of Sec. XV we find

AzR (s', t) = 2i/b~ ~(a(t), t)] p (a(t),t)R (s',t), (A4)

where

R..(s', t) = —',~L2n(t)+1]
X(—p~q~) '"y~ (t)P «)(—x) (AS)

so that

a~R„'~(t,s) = 2iLb &-& (a(t),t)],
Xp..(n(t), t)R.:i(t,s), (A6)

where
1 dS

R.:(t,s) = R, (-s',t).
1I ttI S S

Hence R (t,s) is a modified p-p Regge-pole term with
residues xs(p&q&) '"y (t) We find, .then, that

(1/S )6 A( t,s8) =2iLb& &( (t),t)] P..( (t),t)
XLR.. (t,s)+P.:(t,I)]. (AS)

We can verify that the right side of (AS) yields
asymptotically the correct anomalous discontinuity in
the following way.
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First we note that the ~-~ normal threshold discon- It follows that
tinuity contains the complete anomalous threshold
term. Ke have for this discontinuity T(+& (t,s) = —i S&r Q (2l+1)p..(l,t)B,.(l,t ) (p,q,)'

lM

Xb' '(l, t)Pi(*) (A14)A, (s,t+, s) A—, (s,t, ())

If we perform a Sommerfeld-Watson transformation
&t+& ) & (A ) on this series we find, ignoring the background integral,

where that

dp( )= [1i(2x)'][q&/4(t)")dt's' T'+& (t,s) = i(S&i)B..(a(t),t)y .(t) (p&q&)~ "&A10

&i (2a(t)+1)
(R..(t,s)=—

(p&q&) (&)y„(t)P.(,)(—x). (A17)
2 Sin&ia(t)

T(t,s) = i (2—&i)4 dp(2) A, (t,s')g'

X + . (A11) The only factor on the right side of Eq. (A16) with the
anomalous threshold is b' '(a(t), t). When we take the

That part of the right-hand side which contains only
right-hand s-plane cuts is

lI&gT(+) (t,s) = 2i(81r)[b( &(a(t),t)j&

XP..(a(t), t)(R..(t,s). (AIS)
T(+& (t,s) = i (2&i—)4 dp(2)

It follows then that the discontinuity in the full ampli-
(+& (t ), (A12) tude is given by

St 2—

The contribution T(t,s) which contains the anomalous Xb"(a(t),t)P (g)(—x). (A15)
threshold is obtained by replacing A, (s,t, i) by the That is,
x-exchange poles. Because the anomalous threshold
lies on the second sheet of A „when s&t,'&2t&t ', an T (+()ts)= i2( S&)rb('(a(t), t)p (a(t), t)(R (t,s), (A16)
additional minus sign is introduced. %'e have, then,
for T(t,s), where

It we expand both factors of the integrand ill a I egendre
series, we obtain

since asymptotically
X[(R (t,s)+(R (t,i)$ (A19)

A, (+&(t+ s') =S&r Q (2l+1)(q&s)'B~ (l t)P&(x'),
lM R.."(t,s) (R. (t,s)

g ce

4x Q (2l+ 1)(p q )lb( ) (l t)P((x&&) (A13) we see that Eqs. (AS) and (A19) yield the same result
m' —s when s is large.


